


MECHANICAL DATA

Dimensions in mm

3.60 (0.142) Max 0.50 (0.020)

ADVANCED DISTRIBUTED BASE DESIGN HIGH VOLTAGE HIGH SPEED NPN SILICON POWER TRANSISTOR

- SEMEFAB DESIGNED AND DIFFUSED
- HIGH VOLTAGE
- FAST SWITCHING
- HIGH ENERGY RATING

FEATURES

- Multi-base for efficient energy distribution across the chip resulting in significantly improved switching and energy ratings across full temperature range.
- Ion implant and high accuracy masking for tight control of characteristics from batch to batch.
- Triple Guard Rings for improved control of high voltages.

SMD1 PACKAGE

Pad 2 - Collector Pad 1 - Base Pad 3 - Emitter

ABSOLUTE MAXIMUM RATINGS (T_{case} = 25°C unless otherwise stated)

V_{CBO}	Collector – Base Voltage	180V
V_{CEO}	Collector – Emitter Voltage (I _B = 0)	90V
V_{EBO}	Emitter – Base Voltage ($I_C = 0$)	10V
I _C	Collector Current	7A
$I_{C(PK)}$	Peak Collector Current	10A
I _B	Base Current	2A
P_{tot}	Total Dissipation at T _{case} = 25°C	50W
	Derate above 25°C when used on efficient heatsink	0.28W/°C
T_{stg}	Operating and Storage Temperature Range	−65 to 200°C

Semelab plc. Telephone +44(0)1455 556565. Fax +44(0)1455 552612.

E-mail: sales@semelab.co.uk Website: http://www.semelab.co.uk

ELECTRICAL CHARACTERISTICS (T_{case} = 25°C unless otherwise stated)

	Parameter	Test Conditions		Min.	Тур.	Max.	Unit	
	ELECTRICAL CHARACTERISTICS							
V _{CEO(sus)}	Collector – Emitter Sustaining Voltage	I _C = 10mA		90				
V _{(BR)CBO}	Collector – Base Breakdown Voltage	I _C = 1mA		180			\ \ \	
V _{(BR)EBO}	Emitter – Base Breakdown Voltage	I _E = 1mA		10				
I _{CBO}	Collector Cut–Off Current	V _{CB} = 180V				10	μА	
			T _C = 125°C			100		
I _{CEO}	Collector Cut-Off Current	I _B = 0	V _{CE} = 80V			100	μΑ	
I _{EBO}	Emitter Cut-Off Current	I _C = 0				10		
		V _{EB} = 9V	T _C = 125°C			100	μΑ	
h _{FE} ∗	DC Current Gain	I _C = 0.3A	V _{CE} = 4V	30		80	_	
		I _C = 3A	V _{CE} = 4V	25		60		
		I _C = 5A	$V_{CE} = 4V$	20		50		
			$T_C = 125$ °C			50		
V _{CE(sat)*}	Collector – Emitter Saturation Voltage	I _C = 1A	$I_{B} = 0.1A$			0.2	V	
		I _C = 3A	$I_{B} = 0.3A$			0.6		
		I _C = 6A	$I_{B} = 0.6A$			1.5		
V _{BE(sat)*}	Base – Emitter Saturation Voltage	I _C = 3A	$I_{B} = 0.3A$			1.1	V	
		I _C = 6A	$I_{B} = 0.5A$			2.0		
	DYNAMIC CHARACTERISTICS			'				
f _t	Transition Frequency	I _C = 0.2A	V _{CE} = 4V		20		MHz	
C _{ob}	Output Capacitance	V _{CB} = 20V	f = 1MHz		44		pF	

^{*} Pulse test t_p = $300 \mu s$, $\delta < 2\%$